322554(22)

B. E. (Fifth Semester) Examination, April-May/Nov.-Dec. 2020

(New Scheme)

(CSE Engg. Branch)

THEORY OF COMPUTATION

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) is compulsory from each unit. Attempt any two parts from (b), (c) and (d) from each unit.

Unit-I

1. (a) Define Finite Automation.

2

(b) Construct a deterministic finite automation equivalent

7

to $M = (\{q_0, q_1, q_2, q_3\}\{0, 1\}, \delta, q_0, \{q_3\})$ where

transition is given by table:

State/∑	а	b
$\rightarrow q_0$	q_0q_1	q_0
q_1	q_2	q_1
q_2	q_3	q_3
(q_3)		q_2

(c) Consider a nearly machine represent by given figure.

Construct a Moore Machine equivalent to this Mealy machine.

[3]

(d) Write the difference between NDFA and DFA.

Unit-II

2. (a) Define Regular Expression.

2

(b) Construct a DFA with reduced states equivalent to the regular expression i.e. 10 + (0+11) 0*1.

7

(c) Consider the transition system given in figure. Prove that the strings recognized are (a+a(b+aa)*b)*

a(b+aa)*a and if I almost a a

(d) Prove that following Language is not regular

$$L = \left\{0^i \ 1^i / i \ge 1\right\} \dots$$

Unit-III

3. (a) Define Grammar.

2

(b) Consider the following grammar and generate the left must derivation and right most derivation for the string "aaa bbabbba"

$G = (\{S, B, A, \{a, b\}, P, S\}) = \text{where}$	
P includes	
$S \rightarrow aB/bA$	
$A \rightarrow a/aS/bAA$	
$B \rightarrow b/bS/aBB$	
(c) Consider the context free grammar G where $S \to AB$, $A \to a$, $B \to C/b$, $C \to D$, $D \to E$, $E \to a$. Eliminate all unit productions.	; 7
(d) Convert CGF into CNF form which is given below	
$S \rightarrow bAc/aB$, $A \rightarrow bAA/aS/a$, $B \rightarrow aBB/bS/b$	7
Unit-IV	
4. (a) Define Push Down Automata.	2
(b) Design a PDA which accepts $L = \{ a^n b^n / n \ge 0 \}$.	7
(c) Design a turing machine M that recognizes the language	7
$L = \left\{ \left. a^n b^n c^n \middle/ n \ge 1 \right\} $	
(d) Write short notes on: (i) Church's Hypothesis (ii) Halting problem of turing machine	7
- B marinic	

(a)	Define Partial and Initial function.	2
(b)	Explain recursive and recursive enumerable language with example.	7
(c)	Write short notes on :	7
	(i) NP-completeness	
	(ii) Space & Time complexity	
(d)		7
	(b)	(c) Write short notes on : (i) NP-completeness